Space Technology
Raytheon

Performance With Ka-band Stored Mission Data

EESS Wideband Downlink Workshop

March 25 – 27, 2003

David G. Lubar Raytheon

National Polar-orbiting Operational Environmental Satellite System

A Tri-agency Effort to Leverage and Combine Environmental Satellite Activities

Mission

Provide a national, operational, polarorbiting remote-sensing capability

Achieve National Performance Review (NPR) savings by converging DoD and NOAA satellite programs

Incorporate new technologies from NASA

Encourage International Cooperation

NORTHROP GRUMMAN

Space Technology

System Overview

 An Overview of the NPOESS and NPP programs were given on March 25 in the following session:

Future Weather Systems Coriolis: Usage at 8070 GHz,

NPOESS: Planned usage at 26.25 GHz

Presentation Focus

- Our program is the first non-GEO environmental satellite system to utilize Ka-band instead of X-band for stored mission data downlinking.
 - Advantage:
 - Avoid the crowded existing EESS frequencies at X band
 - Ka band better able to accommodate our bandwidth needs
 - Challenge:
 - Share the spectrum with other, non-EESS co-primary users

Space Technology

NPOESS Segment Architecture

Raytheon

Space Technology

C3 Segment Architecture

Low-cost, reliable, and timely data delivery with flexibility to accommodate system growth and technology insertion

Data Downlink and Processing

1. Sense Phenomena

3. Transport Data to Centrals for Processing

Global fiber network connects
15 receptors to Centrals

Monitor and Control Satellites and Ground Elements

Alternate MMC

4. Process Raw data into EDRs and Deliver to Centrals

Full IDP Capability at each Central NESDIS, AFWA, FNMOC, NAVO

Operational Considerations

- Raw unprocessed data called Raw Data Records (RDR)
- Stored data downlinking priority for SafetyNet
 - New RDRs, not yet downlinked from space vehicle
 - RDRs sent from last receptor downlink session (stored at receptor and not automatically resent via WAN for processing)
 - Any RDR resend specifically requested from the mission control center via TT&C uplink
 - Live RDRs currently on space vehicle data bus

Proposed SafetyNet Architecture

SafetyNet* -- 15 globally distributed SMD receptors linked to the centrals via commercial fiber -- enables low data latency and high data availability

Raytheon

SafetyNet Earth Station Configuration

- Antenna: 3.6 meter
- Full motion, 3-axis
- Similar to antennas used to support MODIS direct broadcast
- Accompanying hardware to include radome, receiver, data formatting and storage, network equipment to interface with private WAN
- 3 db minimum link budget margin for rain attenuation
- Co-located with commercial fiber access points

Ka Spectrum Utilization

- The SafetyNet concept utilizes a stored mission data downlink in the 25.5 to 27 GHz EESS (space-to-earth) band
 - First use by an environmental satellite for SMD in this band
 - Downlink requires about 300 MHz of the total 1.5 GHz spectrum in this band
 - Fifteen geographically-diverse, worldwide receive-only earth station locations utilized; Five stations US&P, Ten stations international
 - Hardware implementation with COTS
 - Unmanned operation

Frequency Allocation & Uses

Region 1	Region 2	Region 3	
]]]	EARTH EXPLORATION-SATELLITE (space-to-Earth) 5.536A 5.536B FIXED INTER-SATELLITE 5.536 MOBILE Standard frequency and time signal-satellite (Earth-to-space)		

- ITU worldwide allocation for EESS (space-to-earth)
 - Co-primary with
 - Fixed (generally local wireless loop e.g., LMDS)
 - Mobile
 - Inter-Satellite (EESS and Space Research applications)
 - Additional secondary user: frequency & time uplink
- Potential for Space Research co-primary allocation post WRC-03

Foreign Frequency Allocations

 Since the receive earth stations must be licensed in each country, individual country tables must be consulted

Country	Allocation	Comment
Australia	Primary	
Brazil		Discretion of regulator
Chile	Secondary	
Finland	Secondary	
Germany	Secondary	
India	Primary	
New Zealand	Primary	Negotiation with private Management Rights Holders
South Africa	Primary	Q
South Korea		Discretion of regulator
US & P	Secondary	FCC NRPM 02-261 For change to primary

Ka Spectrum Availability

- Most foreign sites have plans to share this band with LMDS or MMDS (fixed) in accordance with ITU-R F.748-3
- Problem is complicated by existence of ITU footnote S5.536B
 - Gives EESS earth
 stations no priority over
 terrestrial services now
 or in the future in about
 50 countries

Receptor Siting Considerations

- System Performance: Data Latency
 - 28 minutes, 95%
- Availability of Frequency Allocation
 - Shared with fixed (LMDS) and mobile, ISS
- Non-spectrum Regulatory Issues
 - telecom licensing, zoning
- Communications costs
 - Proximity to NPOESS
 WAN network provider

Raylheon

Baseline Average Latency

NPOESS Data Downlink Summary

- SafetyNet architecture is unique and innovative
 - Satellite has visibility to a receptor significant percentage of the time
 - Loss of a given receptor has little impact on system performance
 - System can be easily expanded by adding new receptor
- Moves from crowded X-band to Ka-band, making efficient use of spectrum
- Flexible design for ease of expansion, using COTS hardware and existing commercial WAN
- Timeliness of receipt of raw environmental data for processing is greatly improved over current systems